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A B S T R A C T

Clustering is a popular data analysis and data mining technique. A popular technique for clustering is

based on k-means such that the data is partitioned into K clusters. However, the k-means algorithm

highly depends on the initial state and converges to local optimum solution. This paper presents a new

hybrid evolutionary algorithm to solve nonlinear partitional clustering problem. The proposed hybrid

evolutionary algorithm is the combination of FAPSO (fuzzy adaptive particle swarm optimization), ACO

(ant colony optimization) and k-means algorithms, called FAPSO-ACO–K, which can find better cluster

partition. The performance of the proposed algorithm is evaluated through several benchmark data sets.

The simulation results show that the performance of the proposed algorithm is better than other

algorithms such as PSO, ACO, simulated annealing (SA), combination of PSO and SA (PSO–SA),

combination of ACO and SA (ACO–SA), combination of PSO and ACO (PSO–ACO), genetic algorithm (GA),

Tabu search (TS), honey bee mating optimization (HBMO) and k-means for partitional clustering

problem.
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1. Introduction

Data clustering describes the process of grouping data into
classes or clusters such that the data in each cluster share a high
degree of similarity while being very dissimilar to data from other
clusters. Dissimilarities are assessed according to the attribute
values describing the objects. Generally, distance measures are
utilized. Data clustering has roots in a number of areas; including
data mining, machine learning, biology, and statistics. Traditional
clustering algorithms can be divided into two main categories:
hierarchical and partitional [1–3]. This paper concentrates on the
partitional clustering. k-Means clustering algorithm, which is
developed three decades ago, is one of the most popular partitional
clustering used in variety of domains. The k-means algorithm is
defined over continuous data. The k-means algorithm gave better
results only when the initial partitions were close to the final
solution. In other words, the results of k-means highly depend on
the initial state and reach to local optimal solution. In order to
overcome this problem, a lot of studies have done in clustering [1–
13]. For instance, Kao et al. have proposed a hybrid technique
based on combining the k-means algorithm, Nelder–Mead simplex
search, and PSO for cluster analysis [1]. Cao et al. have presented a
hybrid algorithm according to the combination of GA, k-means and
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logarithmic regression expectation maximization [2]. Zalik has
introduced a k-means algorithm that performs correct clustering
without pre-assigning the exact number of clusters [3]. Krishna
and Murty have presented an approach called genetic k-means
algorithm for clustering analysis [4]. Mualik and Bandyopadhyay
have proposed a genetic algorithm based method to solve the
clustering problem and experiment on synthetic and real life
datasets to evaluate the performance [5]. It defines a basic
mutation operator specific to clustering called distance-based
mutation. Fathian et al. have proposed the HBMO algorithm to
solve the clustering problem [6]. A genetic algorithm that
exchanges neighboring centers for k-means clustering has
presented by Laszlo and Mukherjee [7]. Shelokar et al. have
introduced an evolutionary algorithm based on ACO algorithm for
clustering problem. Ng and Sung have proposed an approach based
on TS for cluster analysis [7,8]. Niknam et al. have presented a
hybrid evolutionary optimization algorithm based on the combi-
nation of ACO and SA to solve the clustering problem [11,12].
Niknam et al. have presented a hybrid evolutionary algorithm
based on PSO and SA to find optimal cluster centers [13].

The PSO algorithm is one of the modern evolutionary
algorithms. This algorithm was first proposed by Kennedy and
Eberhart. PSO was developed through simulation of a simplified
social system, and has been found to be robust in solving
continuous nonlinear optimization problems. The PSO algorithm
can produce high-quality solutions within shorter calculation time
and more stable convergence characteristics than other stochastic
methods [12–17]. However, the performance of the traditional PSO
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significantly depends on its parameters, and it often suffers from the
problem of being trapped in local optima. Also the final outputs have
some stochastic characteristics. In order to avoid these problems,
this paper presents a new hybrid evolutionary optimization
algorithm based on combining the fuzzy adaptive particle swarm
optimization (FAPSO) and ACO algorithms, called FAPSO–ACO. In the
algorithm, the inertia weight and learning factors of PSO are
dynamically adjusted using fuzzy IF/THEN rules. The algorithm
incorporates intelligent decision-making structure of ACO algorithm
into the original FAPSO where the global best position is unique for
every particle. The proposed algorithm uses randomly selection
procedure of ACO algorithm to assign different global best positions
to every distinct agent.

In this paper, in order to overcome the k-means shortcomings,
the hybrid evolutionary algorithm is used to solve the clustering
problem. To use the advantages of the k-means algorithm in the
proposed algorithm, the output of hybrid FAPSO–ACO algorithm is
considered as the initial state of k-means. Through experiments, it
is shown that the FAPSO–ACO–K algorithm efficiently finds
accurate clusters in several datasets.

The main contribution of this paper is presentation of a new
hybrid evolutionary algorithm based on the combination of FAPSO
and ACO algorithm to solve the clustering problem.

The rest of this paper is organized as follows. In Section 2, the
cluster analysis problem is discussed. In Sections 3 and 4, the basic
principles of the PSO and ACO algorithms are introduced, respec-
tively. In Section 5, the proposed hybrid evolutionary algorithm is
presented. The application of the FAPSO–ACO–K algorithm in
clustering is shown in Section 6. In Section 7, the feasibility of the
FAPSO–ACO–K is demonstrated and compared with the PSO–ACO,
PSO, ACO, PSO–SA, ACO–SA, HBMO, SA, GA, TS and k-means for
different data sets. In Section 8 a case of an internet bookstore has
been analyzed. Finally, Section 9 includes the conclusion.

2. Cluster analysis problem

Data clustering, which is an NP-complete problem of finding
groups in heterogeneous data by minimizing some measure of
dissimilarity, is one of the fundamental tools in data mining,
machine learning and pattern classification solutions [10].
Clustering in N-dimensional Euclidean space RN is the process of
partitioning a given set of n points into a number, say k, of groups
(or, clusters) based on some similarity (distance) metric in
clustering procedure is Euclidean distance, which derived from
the Minkowski metric (Eqs. (1) and (2))

dðx; yÞ ¼
Xm

i¼1

jxi � y jj
r

 !1=r

(1)

dðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

ðxi � y jÞ
2

vuut (2)

Let the set of n points {X1, X2, . . ., Xn} be represented by the set S

and the K clusters be represented by C1, C2, . . ., CK. Then:

Ci 6¼f for i ¼ 1; . . . ;K;

Ci \C j ¼ f for i ¼ 1; . . . ;K; j ¼ 1; . . . ;K; andi 6¼ j

and [
K

i¼1
Ci ¼ S:

In this study, we will also use Euclidian metric as a distance
metric. The existing clustering algorithms can be simply classified
into the following two categories: hierarchical clustering and
partitional clustering. The most class of popular class of partitional
clustering methods is the center based clustering algorithms [11].
The k-means algorithms, is one of the most widely used center
based clustering algorithms. To find K centers, the problem is
defined as an optimization (minimization) of a performance
function, Perf(X, C), defined on both the data items and the center
locations. A popular performance function for measuring goodness
of the k clustering is the total within-cluster variance or the total
mean-square quantization error (MSE), Eq. (3) [11]

Per f ðX;CÞ ¼
XN

i¼1

MinfjjXi � Cljj2jl ¼ 1; . . . ;Kg (3)

The steps of the k-means algorithm are as follows [4]:

Step 1: Choose K cluster centers C1, C2, . . ., Ck randomly from n

points {X1, X2, . . ., Xn}.
Step 2: Assign point Xi, i = 1, 2, . . ., n to cluster Cj, j 2 {1, 2, . . ., K} if

jjXi � Cjjj < jjXi � Cpjj, p = 1, 2, . . ., K, and j 6¼ p.
Step 3: Compute new cluster centers C�1;C

�
2; . . . ;C�K as follows:

C�i ¼
1

n

X
x j 2Ci

X j; i ¼ 1;2; . . . ;K;

where ni is the number of elements belonging to cluster Ci.
Step 4: If termination criteria satisfied, stop otherwise continues

from step 2.

Note that in case the process close not terminates at step 4
normally, then it executed for a mutation fixed number of iterations.

3. Original PSO and FAPSO algorithms

3.1. Original PSO

PSO is a population-based stochastic search algorithm. It was
first introduced by Kennedy and Eberhart. Since then, it has been
widely used to solve a broad range of optimization problems [13–
17]. The algorithm was presented as simulating animals’ social
activities, e.g. insects, birds, etc. It attempts to mimic the natural
process of group communication to share individual knowledge
when such swarms flock, migrate, or hunt. If one member sees a
desirable path to go, the rest of this swarm will follow quickly. In
PSO, this behavior of animals is imitated by particles with certain
positions and velocities in a searching space, wherein the
population is called a swarm, and each member of the swarm is
called a particle. Starting with a randomly initialized population,
each particle in PSO flies through the searching space and
remembers the best position it has seen. Members of a swarm
communicate good positions to each other and dynamically adjust
their own position and velocity based on these good positions. The
velocity adjustment is based upon the historical behaviors of the
particles themselves as well as their neighbors. In this way, the
particles tend to fly towards better and better searching areas over
the searching process. The searching procedure based on this
concept can be described by (4)

V ðtþ1Þ
i ¼v � V ðtÞi þc1 �rand1ð�Þ�ðPbesti� XðtÞi Þþc2 � rand2ð�Þ�ðGbest� XðtÞi Þ

X
ðtþ1Þ
i ¼ X

ðtÞ
i þ V

ðtþ1Þ
i

Xt
i ¼ ½xt

i;1; x
t
i;2; . . . ; xt

i;K �1�K

Pbesti ¼ ½pbestt
i;1; pbestt

i;2; . . . ; pbestt
i;K �1�K

Gbest ¼ ½gbestt
1; gbestt

2; . . . ; gbestt
K �1�K

vðtþ1Þ ¼ vmax �
vmax �vmin

tmax
�t

In these equations, i = 1, 2, . . ., NSwarm is the index of each
particle, t is the iteration number, rand1(�) and rand2(�) are random
numbers between 0 and 1. Pbesti is the best previous experience of
the ith particle that is recorded. Gbest is the best particle among the



Fig. 1. Membership functions of inputs and outputs (a) NBF or NU, (b) v, and (c) c1

and c2.

Table 1
Fuzzy rules for the inertia weight.

v NU

PS PM PB PR

NBF PS PS PM PB PB

PM PM PM PB PR

PB PB PB PB PR

PR PB PB PR PR

Table 3
Fuzzy rules for learning factor c2.

c2 NU

PS PM PB PR

NBF PS PR PB PM PM

PM PB PM PS PS

PB PM PM PS PS

PR PM PS PS PS

Table 2
Fuzzy rules for learning factor c1.

c1 NU

PS PM PB PR

NBF PS PR PB PB PB

PM PB PM PM PS

PB PB PM PS PS

PR PM PM PS PS
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entire population. NSwarm is the number of the swarms. Constants
c1 and c2 are the weighting factors of the stochastic acceleration
terms, which pull each particle towards Pbesti and Gbest positions.
tmax is the maximum number of iterations. vmax and vmin are the
maximum and minimum of the inertia weights, respectively. K is
the number of variables.

As indicated in (4), there are three tuning parameters; v, c1, and
c2 that each of them has a great impact on the algorithm
performance. The inertia weight v controls the exploration
properties of the algorithm. The learning factors c1 and c2

determine the impact of the personal best Pbesti and the global
best Gbest, respectively. If c1 > c2, the particle has the tendency to
converge to the best position found by itself Pbesti rather than the
best position found by the population Gbest, and vice versa. Most
implementations use a setting with c1 = c2 = 2 [12–17].

3.2. FAPSO

From experience, it is known that [15]:

(i) when the best fitness is found at the end of the run, low inertia
weight and high learning factors are often preferred;

(ii) when the best fitness is stayed at one value for a long time, the
number of generations for unchanged best fitness is large. The
inertia weight should be increased and learning factors should
be decreased.

According to this knowledge, a fuzzy system is utilized to tune
the inertia weight and learning factors with the best fitness (BF)
and the number of generations for the best unchanged fitness (NU)
as the input variables, and the inertia weight (v) and learning
factors (c1 and c2) as the output variables.

The BF value determines the performance of the best candidate
solution found so far. The optimization problems have different
ranges of the BF values. To use a FAPSO, which is applicable to a
various range of problems, the ranges of the BF and NU values are
normalized into [0, 1.0]. The BF values can be normalized using the
following formula:

NBF ¼ BF � BFmin

BFmax � BFmin
(5)

where BFmax and BFmin are the maximum and minimum values
of BF value.

NU values are normalized in a similar way. Other converting
methods are possible as well. The bound values for v, c1, and c2 are:
0.2 � v � 1.2, 1 � c1 � 2 and 1 � c2 � 2.

For fuzzification of every input and output, the membership
functions shown in Fig. 1 are used.

In Fig. 1 PS (positive small), PM (positive medium), PB (positive
big) and PR (positive bigger) are the linguistic values for the inputs
and outputs.

The Mamdani-type fuzzy rule is used to formulate the
conditional statements that comprise fuzzy logic. For example

Ri : IF ðNBF is PBÞ and ðNU is PMÞ;
THEN ðv is PBÞ; ðc1 is PMÞ and ðc2 is PMÞ

The fuzzy rules in Tables 1–3 [15] are used to adjust the inertia
weight (v) and learning factors (c1 and c2), respectively. Each rule
represents a mapping from the input space to the output space.

To obtain a deterministic control action, a defuzzification strategy
is required. In this paper, the centroid method has been used.

4. ACO algorithm

Dorigo and his colleague’s first proposed ACO as a multi-agent
approach to solve difficult combinatorial optimization problems
like the traveling salesman problem (TSP) and the quadratic
assignment problem (QAP) [11,12,18]. A number of studies based
on ACO have been presented that deal with the classification task
of data mining [18–21,8]. Shelokar et al. [8] presented an ant
colony optimization, methodology for optimally clustering N

objects into K clusters. The algorithm employs distributed agents
who mimic the way real ants find a shortest path from their nest to
food source and back. Mullen et al. reviewed the ant colony
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optimization in several problems including clustering problem
[18]. Holden and Freitas used the ACO algorithm in web page
classification [19]. Parpinelli et al. applied the ACO algorithm in
data mining problem [21].

Ants are insects which live together. Since they are blind
animals, they find the shortest path from nest to food with the aid
of pheromone. The pheromone is the chemical material deposited
by ants, which serves as critical communication media among ants,
thereby guiding the determination of the next movement. On the
other hand, ants find the shortest path based on intensity of
pheromone deposited on different paths. Generally, intensity of
pheromone and the length of the path are used to simulate ant
system. In ACO algorithm, the probability with which an ant q

chooses to go from city i to city j is

pq
i jðtÞ ¼

½ti jðtÞ�g2 ½1=Lil�g1P
l2Nq

i
½tilðtÞ�g2 ½1=Lil�g1

if j2Nq
i

0 otherwise

8><
>: (6)

where tij and Lij are the intensity of pheromone and the length of
the path between cities j and i, respectively. g1 and g2 are the
control parameters for determining the weight of the trail intensity
and the length of the path, respectively. Nq

i is the set of neighbors of
city i for the qth ant. After selecting the next path, the trail intensity
of pheromone is updated as

ti jðt þ 1Þ ¼ ð1� rÞti jðtÞ þDti jðtÞ

Dti jðtÞ ¼
1

Lm
if ði; jÞ 2 global� best� tour

0 otherwise

8<
: (7)

In the above equation, 0 < r � 1 is the pheromone trial evapora-
tion rate. Dtij is the amount of pheromone trail added totij by ants.
Q is a constant parameter. Lm is the length of the global best tour.

To improve the performance of ACO algorithm, Q-learning can
be used in conjunction with ACO as follows.

4.1. ACO and Q-learning

Q-learning falls within the category of reinforcement learn-
ing, which is a subset of machine learning to which one could
also relate the concept of ant algorithms to. Reinforcement
learning involves agents learning by trial and error which actions
are best to take in their current environment in order to achieve
their goals. In a training phase, each time an agent performs an
action in its environment; it may receive a reward or penalty
reflecting the desirability of the outcome of the action
performed. The goal of the agent is then to choose sequences
of actions that maximize the cumulative reward. More speci-
fically, Q-learning involves learning an action-value function,
which measures the utility of taking a given action in a given
state within the environment. At each time-step, t, an agent in
state si takes an action which takes it to a new state si+1. The
agent then receives a reward r depending on the new state. The
Q-values for each state-action pair are updated at each time-step
until convergence between successive Q-values approaches zero,
using the following equation:

Qnðst; aÞ ð1� anÞQn�1ðst; aÞ þ an½rt þ gmaxa0Qn�1ðstþ1; a
0Þ�

and

an ¼
1

1þ snðst; aÞ

(8)

where g is the discount factor, a0 is the action that maximizes Q,
and visits(st, a) is the total number of times the given state-action
pair have previously been visited. An algorithm inspired by the
original AS, called Ant-Q, was developed by Dorigo and Gambar-
della [22,23]. This algorithm has many similarities with the Q-
learning algorithm, but also a few key differences; mainly that Ant-
Q, unlike typical Q-learning algorithms, involves using multiple
agents. These agents communicate, exchanging information in the
form of AQ-values. As with AS, the Ant-Q algorithm was developed
originally for the classic benchmark problem TSP. For TSP, AQ(r, s)
is the Ant-Q value associated with the path (r, s) between cities.
HE(r, s) is a heuristic value associated to path (r, s), which for TSP is
the inverse of distance. k is an agent whose task it is to complete a
closed tour of all cities, and associated with each agent k there is a
list, Jk(r), of all cities still to be visited, where r is the current city.
This list acts as a kind of memory, and is another important
difference between Ant-Q and Q-learning. The state transition rule
for an agent k in city r is as follows:

s ¼ argmaxu2 JkðrÞf½AQðr;uÞ�d � ½HEðr;uÞ�bg if q � q0;

S otherwise;

(
(9)

where a and b are parameters which weigh the relative importance
of the learned AQ-values and the heuristic values, q is a uniform
probability randomly chosen value in [0, 1], q0 (0� q0 � 1) is a
parameter such that the higher q0 the smaller the probability to
make a random choice, and S is a random variable selected according
to a probability distribution given by the function of the AQ(r, u)’s
and HE(r, u)’s, with u 2 Jr(r). The update rule for the AQ-values is as
follows:

AQðr; sÞ ð1� aÞ � AQðr; sÞ þ aðDAQðr; sÞ þ g

�Maxz2 JkðsÞAQðs; zÞÞ; (10)

where a and g are the learning step and discount factor,
respectively. This update rule is the same as in Q-learning except
that the set of available actions in state s, i.e. the set Jk(s), is a
function of the previous history of agent k. This approach adapts
the idea of ant algorithms to that of Q-learning, and it is important
to note that Ant-Q does not make use of artificial pheromones. A
different approach has been developed in Refs. [23,24], which
adapts the idea of Q-learning to that of ant algorithms, by
introducing the use of artificial pheromones into multi-agent
Q-learning. The pheromone Q-learning (Phe-Q) algorithm uses
the same Q-value update function as in Eq. (13), but with an
additional factor to be maximized, called the belief factor. The
belief factor is a function of the synthetic pheromone concentra-
tion on the trial and reflects the extent to which an agent will take
into account the information laid down by other agents from
the same cooperating group. The belief factor is the ratio between
the sum of actual pheromone concentrations in the current plus
surrounding states, and the sum of the maximum possible
pheromone concentration in the current plus surrounding states,
and is given by

Bðs; aÞ ¼
P

s2Na
fðsÞP

s2Na
fmaxðsÞ

(11)

where f(s) is the pheromone concentration at state s in the
environment, and Na is the set of surrounding states for a chosen
action a. With the addition of the belief factor the Q-learning
update function then becomes

Qnðst; aÞ ð1� anÞQn�1ðst; aÞ þ anfrt þ gmaxa0 ½Qn�1ðstþ1; a
0Þ

þ jBðstþ1; a
0Þ�g (12)

where the parameter j is a sigmoid function of time epochs � 0,
such that it increases with the number of agents who successfully
complete the given task. In this example, where a key feature of
the ant algorithms has been coupled with another established
machine learning technique, improvements in the performance
compared to the same algorithm without the additional ant
algorithm feature have been shown [24,25]. This is a clear
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example of how ‘hybrid’ algorithms, bringing elements of
different machine learning techniques together, can produce
superior performing algorithms.

5. Hybrid FAPSO–ACO–K algorithm

As mentioned in the previous sections, the studies conducted
by researchers confirm that the PSO method should be taken into
account as a powerful technique, which is efficient enough to
handle various kinds of nonlinear optimization problems.
Nevertheless, it may be trapped into local optima if the global
best and local best positions are equal to the particle’s position
over a number of iterations. Recently, numerous ideas have been
used to alleviate this drawback by combining other global
optimization algorithms such as GA, evolutionary programming
(EP) or SA with the PSO [11–17]. In these approaches, new
generation members are produced at each iteration by using
evolutionary algorithm and then PSO’s movement rule is applied
to these new members providing better opportunity of exploring
new places.

In the PSO algorithm, the Gbest value stored in PSO’s memory
has an important role in the steer of other particles. If the
Gbest value does not change after some iteration, other particles
gradually get close to the Gbest position. The ability of the best
Fig. 2. Pseudocode for th
agent to search local area is also reduced since the condition
v < 1 implies that the velocity of the Gbest particle tends to
zero by iteration. This condition may lead to local convergence
point. In this paper, the proposed algorithm is specifically
developed to address a drawback of the original PSO, where the
Gbest particle is not able to search locally as well as other
particles do. The basic idea behind this algorithm is that the
selection of the Gbest particle for each individual is according to
the ACO best path selection methodology. On the other hand, in
this paper a new method is proposed to incorporate intelligent
decision-making structure of ACO algorithm into the original
PSO where the global best position is unique for every particle.
However, the proposed algorithm uses randomly selection
procedure of ACO algorithm to assign different global best
positions to every distinct agent. For clustering problem, the k-
means algorithm tends to converge faster than the PSO and ACO
algorithms as it requires fewer function evolutions, but it
usually results in less accurate clustering. The proposed
algorithm uses the advantages of this algorithm to improve
the final results of simulation. In other word, the results of the
PSO–ACO algorithm are used as the initial condition of the k-
means algorithm. The pseudo code and the flowchart of the
hybrid algorithm, called PSO–ACO–K, are shown in Figs. 2 and 3,
respectively.
e hybrid algorithm.



Fig. 3. Flowchart of PSO–ACO.
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6. Application of FAPSO–ACO–K on clustering

In this section, the application of FAPSO–ACO–K on the
clustering problem is presented. To apply the FAPSO–ACO–K
algorithm to solve the clustering problem, the following steps
should be taken and repeated.

Step 1: Generate the initial population and initial velocity

The initial population and initial velocity for each
particle are randomly generated as follows:

Population ¼

C1

C2

. . .

CNSwarm

2
6664

3
7775

Ci ¼ ½Center1;Center2; . . . ;CenterK �; i ¼ 1;2;3; . . . ;NSwarm

Center j ¼ ½c1; c2; . . . ; cd�
cmin

i < ci < cmax
i

(13)

Velocity ¼

V1

V2

. . .

VNSwarm

2
6664

3
7775

Vi¼½Center V1;Center V2; . . .Center VK �; i¼1;2;3; . . . ;NSwarm

Center V j ¼ ½v1; v2; . . . ; vd�
vmin

i < vi < vmax
i

(14)

where Centerj is the jth cluster center for the ith individual.

Center_Vj is the velocity of the jth cluster center for the ith

individual. Vi and Ci are the velocity and position of the ith

individual, respectively. d is the dimension of each cluster

center. vmax
i and vmin

i are the maximum and minimum value

of the velocity of each point belonging to the jth cluster

center, respectively. cmax
i and cmin

i (each feature of center) are

the maximum and minimum value of each point belonging

to the jth cluster center, respectively.
Step 2: Generate the initial trail intensity

At initialization phase, it is assumed that the trail
intensity between each pair of swarms is the same and is
generated as follows:

Trail Intensity ¼ ½ti j�NSwarm�NSwarm
ti j ¼ t0

(15)

where tij and t0 are trial intensity between the ith and jth

swarms and initial trial intensity, respectively.
Step 3: Calculate objective function value

The objective function is evaluated for each individual.
Step 4: Sort the initial population based on the objective function

values

The initial population is ascending based on the value
of the objective function.
V ðtþ1Þ
i ¼v � V ðtÞi þc1 � rand1ð�Þ � ðPbesti�CðtÞi Þþc2 � rand2ð�Þ � ðC j�CðtÞi Þ

Cðtþ1Þ
i ¼CðtÞi þ V ðtþ1Þ

i

(19)
Step 5: Select the best global position

The individual that has the minimum objective
function is selected as the best global position (Gbest).

Step 6: Select the best local position

The best local position (Pbesti) is selected for each
individual.
Step 7: Select the ith individual

The ith individual is selected and neighbors of this
particle should be defined dynamically as below:

Si ¼ C jjjjCi � C jjj � 2D0
1

1� expð�at=tmaxÞ

� �
; i 6¼ j

� �
(16)

where D0 is the initial neighborhood radius, a is a

parameter used to tune the neighborhood radius over

the iteration, t, and jj� � �� � �jj is the Euclidean distance

operator.

Step 8: Calculate the next position for the ith individual

There are two cases to calculate the next position as
follows:
	 Case (A) if Si 6¼ {}, where {} stands for null set.

In this case, at first, the transition probabilities
between the Ci and each individual in Si are calculated as
indicated in (17):

½Probability�i ¼ ½Pi1; Pi2; . . . ; Pi;M �1�M

Pi j ¼
ðti jÞg2ð1=Li jÞg1

XM
j¼1

ðti jÞg2 ð1=Li jÞg1

Li j ¼
1

JðCiÞ � JðC jÞ
�� ��

(17)

where Pij is the state transition probability between Ci

and the jth individual in Si. M is the number of members

in Si.

Then the cumulative probabilities are calculated as
below:

½Cumulative probability�i ¼ ½C p1;C p2; . . . ;C pM �1�M

where
C p1 ¼ Pi1

C p2 ¼ C p1 þ Pi2

. . .
C p j ¼ C p j�1 þ Pi j

. . .
C pM ¼ C pM�1 þ PiM

(18)

In above equations, Cpj is the cumulative probability for

the jth individual in Si. The roulette wheel is used for

stochastic selection of the best global position as

follows.

A number between 0 and 1 is randomly generated
and compared with the calculated cumulative prob-
abilities. The first term of the cumulative probabilities
(Cpj), which is greater than the generated number, is
selected and the associated position is considered as the
best global position.

The ith particle is then moved according to the
following rules, if Xj is selected as the best:
The presumed pheromone level between Ci and Cj is
updated at the next stage:

ti jðt þ 1Þ ¼ r � ti jðtÞ þ Pi j (20)

	 Case (B) if Si = {}, which means there is not any individual
in particle’s neighborhood.
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In this case, the ith particle is moved according to the
following rules:
Fig. 4. ArtSet1.

Fig. 5. ArtSet2.

V ðtþ1Þ
i ¼ v � V ðtÞi þ c1 � rand1ð�Þ � ðPbesti � CðtÞi Þ þ c2 � rand2ð�Þ � ðGbest � CðtÞi Þ

Cðtþ1Þ
i ¼ CðtÞi þ V ðtþ1Þ

i

(21)
Then, the trail intensity is updated as following, where
index j represents the best particle index in the group.

ti jðt þ 1Þ ¼ r � ti jðtÞ þ r; 0:1 � r � 0:5 (22)

The modified position for the ith individual is checked
with its limit.

In Eqs. (19) and (21), the fuzzy rules are used to
evaluate the values of v, c1 and c2 parameters.

Step 9: If all of the individuals are selected, go to the next step,
otherwise i = i + 1 and go back to step 7.

Step 10: Check the termination criteria

If the current iteration number reaches the predeter-
mined maximum iteration number, go to the next step,
otherwise the initial population is replaced with the new
population of swarms and then go back to step 3.

Step 11: Consider the last Gbest value as the initial solution for the k-

means algorithm

In this step to use the k-means clustering algorithm
advantageous, the Gbest is considered as an initial solution
of the k-means clustering problem. If the results of k-
means algorithm are better the Gbest value, the k-means
results are considered as the final results, otherwise the
last Gbest is considered as the final results.

7. Experimental results

The experimental results comparing the FAPSO–ACO–K clus-
tering algorithm with several typical stochastic algorithms
including the PSO–ACO, PSO, ACO, SA, GA, TS, HBMO, PSO–SA,
ACO–SA and k-means algorithms are provided for four artificial
data sets and six real-life data sets (Iris, Wine, Vowel, Contraceptive

Method Choice (CMC), Wisconsin breast cancer and Ripley’s glass),
which are described as follows:

Artificial data set one (n = 600, d = 2, k = 4). This is a two-
featured problem with four unique classes. A total of 600 patterns
were drawn from four independent bivariate normal distributions,
where classes were distributed according to

N2 m ¼ mi

0

� �
;
X
¼ 0:5 0:05

0:05 0:5

� 	� 	� �
;

i ¼ 1;2;3;4 m1 ¼ �3; m2 ¼ 0; m3 ¼ 3; m4 ¼ 6;
(23)

m and S being mean vector and covariance matrix, respectively [1].
The data set is illustrated in Fig. 4.

Artificial data set two (n = 250, d = 3, k = 5). This is a three-
featured problem with five classes, where every feature of the
classes was distributed according to Class 1—Uniform(85, 100),
Class 2—Uniform(70, 85), Class 3—Uniform(55, 70) Class 4—Uni-
form(40, 55), Class 5—Uniform(25, 40) [1]. The data set is
illustrated in Fig. 5.

ArtSet3: This is an overlapping two-dimensional triangular
distribution of data points having nine classes where all the classes
are assumed to have equal a priori probabilities (=1/19). It has 900
data points. The X–Y ranges for the nine classes are as follows:

Class 1: [�3.3, �0.7] � [0.7, 3.3],
Class 2: [�1.3, 1.3] � [0.7, 3.3],
Class 3: [0.7, 3.3] � [0.7, 3.3],
Class 4: [�3.3, �0.7] � [�1.3, 1.3],
Class 5: [�1.3, 1.3] � [�1.3, 1.3],
Class 6: [0.7, 3.3] � [�1.3, 1.3],
Class 7: [�3.3, �0.7] � [�3.3, �0.7],
Class 8: [�1.3, 1.3] � [�3.3, �0.7],
Class 9: [0.7, 3.3] � [�3.3, �0.7].

Thus the domain for the triangular distribution for each class
and for each axis is 2.6. Consequently, the height will be 1/1.3
(since 12*2.6*height’’1). The value of K is chosen to be 9 for this
data set.

ArtSet4: This is an overlapping ten-dimensional data set
generated using a triangular distribution of the form shown in



Fig. 6. Triangular distribution along the X-axis.

Table 5
Simulation results of ACO algorithm parameters for iris data set.

Case g1 g2 r Best

solution

Worst

solution

Average

solution

1 0.9 0.9 0.98 97.238 99.9127 98.731

2 0.92 0.9 0.99 97.453 100.871 98.697

3 0.9 0.92 0.98 97.751 99.387 98.182

4 0.94 0.92 0.99 97.521 101.236 99.018

5 0.92 0.94 0.98 97.197 99.997 98.634

6 0.92 0.96 0.99 97.273 100.890 99.320

7 0.96 0.92 0.98 97.236 100.347 99.105

8 0.98 0.94 0.99 97.934 99.719 98.506

9 0.92 0.98 0.98 97.236 98.723 98.003

10 1 1 0.99 97.100777 97.808466 97.171546

Table 4
Simulation results of PSO algorithm parameters for iris data set.

Case c1, c2 vmin,

vmax

Best

solution

Worst

solution

Average

solution

1 1, 1 0.2, 1 98.7531 99.8739 99.173

2 1, 1 0.4, 1 98.7531 101.36 99.987

3 1, 1 0.4, 0.9 98.7531 100.823 99.873

4 1.5, 1 0.4, 0.9 97.146 99.783 99.001

5 1.5, 2 0.4, 0.9 97.237 99.237 98.402

6 2, 1.5 0.4, 0.9 97.862 99.739 98.875

7 2, 2 0.2, 1 96.8942 97.8973 97.2328

8 2, 2 0.3, 1 96.8942 98.7563 978.012

9 2, 2 0.4, 1 96.8942 98.7823 97.2583

10 2, 2 0.4, 0.9 96.8942 97.8973 97.2328
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Fig. 6 for two classes, 1 and 2. It has 1000 data points. The value of K

is chosen to be 2 for this data set. The range for class 1 is [0, 2] �
[0, 2] � [0, 2]. . .10 times, and that for class 2 is [1, 3] � [0, 2] �
[0, 2]. . .9 times, with the corresponding peaks at (1, 1) and (2, 1).
The distribution along the first axis (X) for class 1 may be formally
quantified as

f 1ðxÞ ¼
0 for x � 0;
x for 0< x � 1;
2� x for 1< x � 2;
0 for x>2:

8>><
>>: (24)

for class 1. Similarly for class 2

f 1ðxÞ ¼
0 for x � 1;
x� 1 for 1< x � 2;
3� x for 2< x � 3;
0 for x>3:

(25)

The distribution along the other nine axes (Yi, i = 1, 2, . . ., 9) for
both the classes is

f 1ðxÞ ¼
0 for yi � 0;
yi for 0< yi � 1;
2� yi for 1< yi � 2;
0 for yi >2:

8>><
>>: (26)

Iris data (N = 150, d = 4, K = 3). This is the iris data set. These data
set with 150 random samples of flowers from the iris species
setosa, versicolor, and virginica collected by Anderson (1935).
From each species there are 50 observations for sepal length, sepal
width, petal length, and petal width in cm. This dataset was used
by Fisher (1936) in his initiation of the linear-discriminant-
function technique [11–13].

Wine data (N = 178, d = 13, K = 3). This is the wine data set,
which is also taken from MCI laboratory. These data are the results
of a chemical analysis of wines grown in the same region in Italy
but derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types of
wines. There are 178 instances with 13 numeric attributes in wine
data set. All attributes are continuous. There is no missing attribute
value [11–13].

Contraceptive method choice (N = 1473, d = 10, K = 3). This
dataset is a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey. The samples are married women who were
either not pregnant or do not know if they were at the time of
interview. The problem is to predict the current contraceptive
method choice (no use, long-term methods, or short-term
methods) of a woman based on her demographic and socio-
economic characteristics [11–13].
Vowel data set (N = 871, d = 3, K = 6). This data set consists of 871
patterns. There are six overlapping vowel classes and three input
features [11–13].

Wisconsin breast cancer (N = 683, d = 9, K = 2), which consists of
683 objects characterized by nine features: clump thickness, cell
size uniformity, cell shape uniformity, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli,
and mitoses. There are two categories in the data: malignant (444
objects) and benign (239 objects) [11–13].

Ripley’s glass (N = 214, d = 9, K = 6), for which data were sampled
from six different types of glass: building windows float processed
(70 objects), building windows non-float processed (76 objects),
vehicle windows float processed (17 objects), containers (13
objects), tableware (9 objects), and headlamps (29 objects), each
with nine features, which are refractive index, sodium, magnesium,
aluminum, silicon, potassium, calcium, barium, and iron [11–13].

The original PSO, original ACO, PSO–ACO and FAPSO–ACO
algorithms needs to determine the associated parameters such as
g1, g2, r, a, r, D0, c1, c2, vmin and vmax. In this paper, the best values
for the aforementioned parameters are g1 = g2 = 1.0, r = .99, a = 15,
r = 0.5, D0 = 10, c1 = c2 = 2, NSwarm = 10–15, vmin = 0.4 and
vmax = 0.9 determined by 10 runs of the algorithm. For example,
the mentioned parameters are determined as shown in Tables 4–7
for iris dataset.

The algorithms are implemented by using Matlab 7.1 on a
Pentium IV, 2.8 GHz, 512 GB RAM computer.

Tables 8–17 present a comparison among the results of PSO–
ACO, ACO [11,12], PSO [1] and [13], SA [6] and [13], PSO–SA [13],
ACO–SA [11,12], GA [6], TS [6], HBMO [6] and k-means [11–13] for
100 random tails on the mentioned data sets.

The comparison of results for each dataset based on the bet
solution found in 100 distinct runs of each algorithm and the
convergence processing time taken to attain the best solution. The
quality of the respective clustering will also be compared, where
the quality is measured by the following two criteria:



Table 6
Simulation results of PSO–ACO algorithm parameters for iris data set.

Case c1, c2 vmin, vmax g1 g2 D0 a r r Best solution Worst solution Average solution

1 1, 1 0.2, 1 1 1 10 16 0.5 0.99 96.688 96.6986 96.68975

2 1, 1 0.4, 1 1 1 11 15 0.51 0.99 96.67973 96.69817 96.68898

3 1, 1 0.4, 0.9 1 0.9 10 14 0.52 0.99 96.67573 96.67819 96.677236

4 1.5, 1 0.4, 0.9 0.9 1 10 15 0.49 0.99 96.67673 96.69793 96.68773

5 1.5, 2 0.4, 0.9 0.9 0.9 10 15 0.48 0.99 96.675 96.6895 96.67835

6 2, 1.5 0.4, 0.9 1 1 9 15 0.5 0.98 96.665 96.665 96.665

7 2, 2 0.2, 1 1 1 9 15 0.5 0.98 96.662 96.662 96.662

8 2, 2 0.3, 1 1 1 8 15 0.5 0.99 96.660 96.660 96.660

9 2, 2 0.4, 1 1 1 10 15 0.5 0.99 96.661 96.661 96.661

10 2, 2 0.4, 0.9 1 1 10 15 0.5 0.99 96.6500 96.6500 96.6500

Table 7
Simulation results of FAPSO–ACO algorithm parameters for iris data set.

Case g1 g2 D0 a r r Best solution Worst solution Average solution

1 0.9 0.9 10 16 0.5 0.99 96.6500 96.664 96.6523

2 0.92 0.9 11 15 0.51 0.99 96.6500 96.667 96.6547

3 0.9 0.92 10 14 0.52 0.99 96.6500 96.668 96.6563

4 0.94 0.92 10 15 0.49 0.99 96.6500 96.672 96.6548

5 0.92 0.94 10 15 0.48 0.99 96.6500 96.665 96.6541

6 0.92 0.96 9 15 0.5 0.98 96.6500 96.665 96.6538

7 0.96 0.92 9 15 0.5 0.98 96.6500 96.662 96.65101

8 0.98 0.94 8 15 0.5 0.99 96.6500 96.660 96.6552

9 0.92 0.98 10 15 0.5 0.99 96.6500 96.661 96.6523

10 1 1 10 15 0.5 0.99 96.6500 96.6500 96.6500

Table 8
Results obtained by the algorithms for 100 different runs on Artset1.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 515.878 515.878 515.878 0 
1.5 1923 1.000 (0.000)

PSO–ACO 515.879 515.88 515.890 1E�5 
1.5 1996 1.000 (0.000)

PSO 515.93 627.74 705.598 180.24 
3 3240 1.000 (0.000)

SA 518.9584 684.682 709.985 195.15 
3 3608 1.000 (0.000)

TS 518.9985 659.801 706.845 191.084 
3 2846 1.000 (0.000)

GA 518.0982 638.094 705.86 189.862 
3 2946 1.000 (0.000)

ACO 517.879 519.88 521.890 2.01 
3 1999 1.000 (0.000)

HBMO 515.879 515.88 515.890 2E�5 
3 2053 1.000 (0.000)

PSO–SA 515.879 515.88 515.890 1.1E�5 
3 1999 1.000 (0.000)

ACO–SA 515.879 515.88 515.890 1.15E�5 
3 1998 1.000 (0.000)

k-Means 516.04 721.57 936.450 295.84 
0.2 80 1.000 (0.000)
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1. Total mean-square quantization error of a data point to all the
centers, as defined in Eq. (3). Clearly, the smaller the sum is, the
higher the quality of clustering is.

2. The F-Measure uses the ideas of precision and recall from
information retrieval [26,27]. Each class i (as given by the class
labels of the used benchmark data set) is regarded as the set of ni
Table 9
Results obtained by the algorithms for 100 different runs on Artset2.

Method Function value Standard deviation

Best Average Worst

PSO–ACO–K 1743.20 1745.90 1746.89 2.6

PSO–ACO 1743.20 1746.99 1748.943 2.75

PSO 1743.20 2517.20 2934.084 415.02

SA 1743.20 2686.84 2988.098 429.025

TS 1743.20 2681.59 3015.481 420.84

GA 1743.20 2667.30 2985.846 437.05

ACO 1743.20 1948.97 2075.729 134.068

HBMO 1743.20 1756.47 1761.864 6.57

PSO–SA 1743.20 1748.73 1751.946 3.84

ACO–SA 1743.20 1749.01 1753.927 3.46

k-Means 1746.9 2762.00 3347.068 720.66
items desired for a query; each cluster j (generated by the
algorithm) is regarded as the set of nj items retrieved for a
query; nij gives the number of elements of class i within cluster
j. For each class i and cluster j precision and recall are then
defined as p(i, j) = (nij/nj) and r(i, j) = (nij/nj) and the correspond-
ing value under the F-Measure is F(i, j) = ((b2 + 1)�p(i, j)�r(i, j)/
CPU time (S) Number of function evaluations F-Measure


3.5 6890 0.958 (0.023)


4 7015 0.928 (0.036)


5 11,325 0.8 (0.223)


5 11,881 0.754 (0.298)


5 10598 0.783 (0.301)


5 11243 0.810 (0.348)


5 9985 0.896 (0.197)


5 11684 0.895 (0.207)


5 7129 0.941 (0.045)


5 7201 0.955 (0.066)


0.3 150 0.912 (0.102)



Table 11
Results obtained by the algorithms for 100 different runs on Artset4.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 1248.026845 1248.026845 1248.026845 0 
16 3,584 0.979 (0.011)

PSO–ACO 1248.562846 1249.010628 1249.268501 0.17 
17 3,652 0.899 (0.021)

PSO 1248.769582 1249.062985 1249.695824 0.57 
123 16,354 0.878 (0.054)

SA 1249.736287 1249.968105 1250.895375 0.98 
124 17,492 0.871 (0.096)

TS 1282.538294 1285.988483 1299.789237 13.84 
128 19,294 0.810 (0.079)

GA 1258.673362 1263.777767 1271.635528 4.628 
135 20,549 0.890 (0.073)

ACO 1248.958685 1249.034036 1249.335442 0.29 
123 16,495 0.894 (0.043)

HBMO 1248.662849 1249.010628 1249.295784 0.18 
136 20,762 0.888 (0.054)

PSO–SA 1248.663290 1249.124098 1249.809627 0.65 
28 3,845 0.894 (0.064)

ACO–SA 1248.806283 1249.010582 1249.310597 0.19 
40 4,246 0.896 (0.072)

k-Means 1254.9452 1297.6945 1392.9843 85.5 0.5 191 0.872 (0.088)

Table 13
Results obtained by the algorithms for 100 different runs on wine data.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 16,295.31 16,295.31 16,295.31 0 
30 6,315 0.521 (0.000)

PSO–ACO 16,295.34 16,295.92 16,297.93 0.869661 
33 6432 0.519 (0.002)

PSO 16,345.9670 16,417.4725 16,562.3180 85.4974 
123 16,532 0.518 (0.055)

SA 16,473.4825 17,521.094 18,083.251 753.084 
129 17,264 0.515 (0.039)

TS 16,666.22699 16,785.45928 16,837.53567 52.073 
140 22,716 0.516 (0.075)

GA 16,530.53381 16,530.53381 16,530.53381 0 
170 33,551 0.515 (0.049)

ACO 16,530.53381 16,530.53381 16,530.53381 0 
121 15,473 0.519 (0.054)

HBMO 16,357.28438 16,357.28438 16,357.28438 0 
40 7,238 0.518 (0.029)

PSO–SA 16,295.86 16,296.001 16,296.1034 0.89612 
38 6,987 0.520 (0.000)

ACO–SA 16,298.628 16,310.283 16,322.438 10.62197 
84 11,628 0.520 (0.000)

k-Means 16,555.68 18,061 18,563.12 793.213 0.7 390 0.521 (0.002)

Table 10
Results obtained by the algorithms for 100 different runs on Artset3.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 964.083265 964.083265 964.083265 0 
16 3,684 1.000 (0.000)

PSO–ACO 964.326528 965.001684 966.106284 1.08 
17 3,762 1.000 (0.000)

PSO 966.562856 967.684592 969.965824 1.98 
30 9,845 1.000 (0.000)

SA 966.418263 968.614089 970.397392 2.01 
32 9,942 1.000 (0.000)

TS 972.629478 975.209275 979.528463 3.46 
33 9,843 1.000 (0.000)

GA 966.649837 969.772302 972.853946 2.94 
39 11,086 1.000 (0.000)

ACO 964.739472 965.048327 966.283745 1.26 
27 9,346 1.000 (0.000)

HBMO 964.536298 965.029763 966.014309 1.11 
32 9,328 1.000 (0.000)

PSO–SA 964.418263 965.614089 966.797392 1.06 
28 9,427 1.000 (0.000)

ACO–SA 964.268542 965.010634 966.201953 1.01 
28 9,648 1.000 (0.000)

k-Means 968.695841 977.594862 981.0896425 3.64 0.5 185 1.000 (0.000)

Table 12
Results obtained by the algorithms for 100 different runs on iris data.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 96.6500 96.6500 96.6500 0 
16 2,480 0.788 (0.004)

PSO–ACO 96.6542 96.6548 96.67412 0.009764 
17 2,523 0.787 (0.006)

PSO 96.8942 97.2328 97.8973 0.347168 
30 4,953 0.782 (0.011)

SA 97.4573 99.957 102.01 2.018 
32 5,314 0.776 (0.025)

TS 97.365977 97.868008 98.569485 0.53 
135 20,201 0.777 (0.023)

GA 113.986503 125.197025 139.778272 14.563 
140 38,128 0.778 (0.008)

ACO 97.100777 97.171546 97.808466 0.367 
75 10,998 0.779 (0.009)

HBMO 96.752047 96.95316 97.757625 0.531 
82 11,214 0.781 (0.022)

PSO–SA 96.66 96.67 96.678 0.008 
17 2,566 0.785 (0.006)

ACO–SA 96.6602 96.73192 96.86381 0.12196 
25 3,629 0.786 (0.005)

k-Means 97.333 106.05 120.45 14.6311 
0.4 120 0.782 (0.000)
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Table 16
Results obtained by the algorithms for 100different runs on Wisconsin breast cancer.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 2,964.25 2,964.25 2,964.25 0 
16 3,492 0.830 (0.002)

PSO–ACO 2,964.38 2,964.39 2,964.50 0.037947 
17 3,545 0.830 (0.008)

PSO 2,973.50 3,050.04 3,318.88 110.8013 
123 16,290 0.819 (0.033)

SA 2,993.45 3,239.17 3,421.95 230.192 
126 17,387 0.818 (0.042)

TS 2,982.84 3,251.37 3,434.16 232.217 
130 18,981 0.818 (0.086)

GA 2,999.32 3,249.46 3,427.43 229.734 
135 20,221 0.819 (0.079)

ACO 2,970.49 3,046.06 3,242.01 90.50028 
123 15,983 0.821 (0.020)

HBMO 2,989.94 3,112.42 3,210.78 103.471 
136 19,982 0.825 (0.011)

PSO–SA 2,965.17 2,966.32 2,967.41 1.7201 
28 3,781 0.829 (0.008)

ACO–SA 2,967.83 2,966.63 2,968.29 1.7732 
40 4,799 0.829 (0.009)

k-Means 2,999.19 3,251.21 3,521.59 251.14 0.5 180 0.829 (0.000)

Table 17
Results obtained by the algorithms for 100 different runs on Ripley’s glass.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 199.53 199.53 199.53 0 
31 6,459 0.435 (0.003)

PSO–ACO 199.57 199.61 200.01 0.13914 
35 6,517 0.434 (0.014)

PSO 270.57 275.71 283.52 4.557134 
400 198,765 0.359 (0.067)

SA 275.16 282.19 287.18 4.238458 
410 199,438 0.347 (0.026)

TS 279.87 283.79 286.47 4.192734 
410 199,574 0.351 (0.077)

GA 278.37 282.32 286.77 4.138712 
410 199,892 0.333 (0.049)

ACO 269.72 273.46 280.08 3.584829 
395 196,581 0.364 (0.064)

HBMO 245.73 247.71 249.54 2.438120 
390 195,439 0.401 (0.079)

PSO–SA 200.14 201.45 202.45 0.892430 
38 6,782 0.430 (0.010)

ACO–SA 200.71 201.89 202.76 0.887234 
49 7,894 0.431 (0.017)

k-Means 215.74 235.5 255.38 12.47107 
1 630 0.431 (0.011)

Table 14
Results obtained by the algorithms for 100 different runs on CMC data.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 5,694.2816 5,694.2816 5,694.2816 0 
31 6,850 0.334 (0.002)

PSO–ACO 5,694.5179 5,694.9214 5,697.4254 0.868771 
35 6,923 0.333 (0.002)

PSO 5,700.9853 5,820.9647 5,923.2490 46.959690 
131 21,456 0.331 (0.028)

SA 5,849.0380 5,893.4823 5,966.9470 50.867200 
150 26,829 0.325 (0.067)

TS 5,885.0621 5,993.5942 5,999.8053 40.84568 
155 28,945 0.327 (0.084)

GA 5,705,6301 5,756.5984 5,812.6480 50.3694 
160 29,483 0.324 (0.036)

ACO 5,701.9230 5,819.1347 5,912.4300 45.634700 
127 20,436 0.328 (0.046)

HBMO 5,699.2670 5,713.9800 5,725.3500 12.690000 
122 19,496 0.330 (0.068)

PSO–SA 5,696.059 5,698.6942 5,701.8140 1.8691 
73 10,528 0.333 (0.002)

ACO–SA 5,696.6075 5,698.2618 5,700.2681 1.98238 
89 12,628 0.333 (0.002)

k-Means 5,842.20 5,893.60 5,934.43 47.16 0.5 270 0.334 (0.000)

Table 15
Results obtained by the algorithms for 100 different runs on vowel data.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 148,976.0005 148,976.0010 148,976.0100 0.0001 
16 3,450 0.652 (0.001)

PSO–ACO 148,976.0100 148,995.2032 149,101.6800 24.5420931 
17 3,523 0.651 (0.002)

PSO 148,976.0152 148,999.8251 149,121.1834 28.8134692 
30 9,635 0.648 (0.056)

SA 149,370.4700 161,566.2810 165,986.4200 2,847.08594 
32 9,423 0.645 (0.084)

TS 149,468.268 162,108.5381 165,996.4280 2,846.23516 
33 9,528 0.645 (0.044)

GA 149,513.735 159,153.498 165,991.6520 3,105.5445 
39 10,548 0.647 (0.059)

ACO 149,395.602 159,458.1438 165,939.8260 3,485.3816 
27 8,046 0.649 (0.074)

HBMO 149,201.632 161,431.0431 165,804.671 2,746.0416 
32 8,436 0.650 (0.066)

PSO–SA 149,001.85 150,343.45 154,751.26 351.45 
33 9,328 0.652 (0.001)

ACO–SA 149,005 149,141.4 149,364.3 120.38 
35 9,991 0.652 (0.001)

k-Means 149,422.26 159,242.89 161,236.81 916 0.45 180 0.652 (0.000)
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(b2�p(i, j) + r(i, j)), where we chose b = 1 to obtain equal
weighting for p(i, j) and r(i, j). The overall F-Measure for the
data set of size n is given by F ¼

P
i

ni
n MAX jfFði; jÞg. Obviously,

the bigger F-Measure is, the higher the quality of clustering is.

The simulation results given in Tables 8–17 show that FAPSO–
ACO–K is very precise. In other word, it provides the optimum
value and small standard deviation in compare to those of obtained
by the other methods. For instance, the results obtained on the iris
dataset show that FAPSO–ACO–K converges to the global optimum
of 96.6500 in all of runs and PSO–ACO reaches to 96.6542 at almost
times while the best solutions of PSO, ACO, SA, TS, GA, HBMO, PSO–
SA, ACO–SA and K-means are 96.8942, 96.853, 97.4573, 97.365977,
113.986503, 96.752047, 96.66, 96.6602 and 97.333, respectively.
The standard deviation of the fitness function for this algorithm,
PSO–ACO and PSO–SA are 0, 0.009764 and 0.008, respectively,
which they significantly are smaller than other methods. Table 9
shows the results of algorithms on the wine dataset. The optimum
value is 16295.31, which is obtained in all the runs of FAPSO–ACO–
K algorithm. Noticeably other algorithms fail to attain this value
even once within 100 runs. Table 10 provides the results of
algorithms on the CMC dataset. As seen from the results, the
FAPSO–ACO–K algorithm are far superior those of obtained by the
others. For the vowel data set, the best global solution, the worst
global solution, the average and the standard deviation of the
FAPSO–ACO–K are 148976.0005, 148976.0010, 148976.0100 and
0.001 respectively. For the PSO–ACO algorithm they are 148976.01,
149101.68, 148995.2032 and 24.5420931, respectively. The results
of the FAPSO–ACO–K and the PSO–ACO algorithms are much better
than those of other algorithms. On Wisconsin breast cancer dataset
results given in Table 12, show that the FAPSO–ACO–K provides the
optimum value of 2964.25 while the PSO–ACO, PSO, ACO and k-
means algorithms obtain 2,964.38, 2,973.50, 2,970.49 and
2,987.19, respectively. The FAPSO–ACO–K was able to find the
optimum in all of runs. Finally, Table 17 shows the best, average,
worst and standard deviation values obtained by algorithms for
Ripley’s glass dataset. It is found that the FAPSO–ACO–K clustering
Table 18
Values of parameters of each of five algorithms.

HBMO ACO

Parameter Value Parameter V

# queens 1 # ants

# drones 150 Probability threshold for

maximum trail

Capacity of spermatheca 50 Local search probability

Maximum speed Randomly 2 [0.5 1] Evaporation rate

Minimum speed Randomly 2 [0 1] # iterations 1

Speed reduction 0.98

Crossover 1.5

# iterations 1000

SA PSO–SA PSO

Parameter Value Parameter Value Par

Probability threshold 0.98 # Swarm 10–15 # S

Initial temperature 5 Probability threshold 0.98 c1 =

Temperature multiplier 0.98 Initial temperature 5 vm

Final temperature 0.01 Temperature multiplier 0.98 vm

Number of iterations

detect steady stat

100 Final temperature 0.01 # i

# iterations 30,000 Number of iterations

detect steady stat

100

c1 = c2 2

vmin 0.4

vmax 0.9

# iterations 500
algorithm is able to provide the same partition of the data points in
all the runs.

In terms of the number of function evaluations, k-means needs
the least number of function evaluations, but the results are less than
satisfactory. For the iris dataset, the number of function evaluations
of PSO–ACO–K, PSO–ACO, PSO, ACO, SA, TS, GA, HBMO, PSO–SA,
ACO–SA and k-means are 2468, 2523, 4953, 4931, 5314, 20201,
38128, 11214, 2566, 3629 and 120, respectively. The number of
function evaluations of FAPSO–ACO–K for Wine, CMC, Vowel,
Wisconsin breast cancer and Ripley’s glass are 6315, 6868, 3487,
3492 and 6503, respectively. These results show that the number of
function evaluations of FAPSO–ACO–K and PSO–ACO are less than
those of other evolutionary algorithms. Based on the obtained
simulation results, we can conclude that the changes of the number
of fitness function evaluations of the proposed algorithm are less
than other evolutionary algorithms for all cases. In the other words,
the number of swarms in the FAPSO–ACO–K algorithm does not
depend on the number of variables greatly. In the proposed
algorithm, NSwarm for iris, wine, CMC, vowel, Wisconsin breast
cancer and Ripley’s glass is 10, 12, 12, 10, 10 and 14, respectively.
Algorithmic parameters for all algorithms are illustrated in Table 18.

The simulation results of the tables illustrate that the average
and the standard deviation of F-Measure of proposed algorithm is
better than those of obtained by others. This is an indication that
the clusters are spatially well separated.

The simulation results in the tables demonstrate that the
proposed hybrid evolutionary algorithm converges to global
optimum with a smaller standard deviation and less function
evaluations and leads naturally to the conclusion that the FAPSO–
ACO–K algorithm is a viable and robust technique for data clustering.

8. Market segmentation: a case of an internet bookstore

FAPSO–ACO–K is the best method for clustering analysis as
shown in Section 7. For further demonstration of the proposed
method, an advanced comparison of five methods made, using
real-world data of an internet bookstore in Iran for market
GA TS

alue Parameter Value Parameter Value

50 Population 50 Tabu list size 25

0.98 Crossover 0.8 Number of trial

solutions

40

0.01 Mutation rate 0.001 Probability threshold 0.98

0.01 # iterations 1000 # iterations 1000

000

ACO–SA

ameter Value Parameter Value

warm 10 � K � d # ants 50

c2 2 Probability threshold for maximum trail 0.98

in 0.5 Local search probability 0.01

ax 1 Evaporation rate 0.01

terations 500 Probability threshold 0.98

Initial temperature 5

Temperature multiplier 0.98

Final temperature 0.01

Number of iterations detect steady stat 50

# iterations 500



Table 19
Result obtained by the algorithms for 10 different runs on real-world problem.

Method Function value Standard deviation CPU time (S) Number of function evaluations F-Measure

Best Average Worst

PSO–ACO–K 18177.294528 18177.294528 18177.294528 0 
45 8980 1.000 (0.000)

PSO–ACO 18177.294528 18179.221845 18180.684595 1.001 
37 12546 1.000 (0.000)

PSO 18205.548625 18230.485263 18255.625482 22.84 
150 39556 0.985 (0.023)

SA 18201.289966 18205.281477 18208.681844 2.84 
200 86025 0.978 (0.065)

TS 18449.512506 18637.767038 18789.804808 21.845 
135 37948 0.945 (0.044)

GA 18209.330750 18231.881661 18267.101294 30.622 
175 58503 0.921 (0.058)

ACO 18201.289966 18201.828425 18206.674560 4.99 
190 76878 0.948 (0.036)

HBMO 18178.736324 18180.234000 18193.764244 12.64 
180 69804 0.956 (0.054)

PSO–SA 18177.294528 18179.845682 18180.985672 0.98 
42 13548 1.000 (0.000)

ACO–SA 18177.294528 18179.958463 18180.995843 0.88 
43 13846 1.000 (0.000)

k-Means 18204.658249 18270.658256 18301.694582 39.55 
0.6 190 1.000 (0.000)

Fig. 7. Iranbin website.
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segmentation based on customer loyalty. Iranbin is the biggest
internet bookstore in Iran with more than 170,000 Persian and
20,000,000 English books and journals. Iranbin to tailor its
products, services and marketing messages to its customers needs
to segment them. Customer segments have traditionally been
based on market research and demographics. There might be a
‘‘young and single’’ segment or a ‘‘loyal entrenched segment’’. Fig. 7
shows the Iranbin website.

8.1. RFM model

Direct marketing professionals have been trying to gain such
insight ever since the end of the nineteenth century, when the first
catalogue of products that could be ordered by mail appeared in
the USA [28]. However, it was only at the beginning of the 1960s
that a simple and effective quantitative method to separate
customers who are likely to make purchases from those who are
not was devised: the recency, frequency and monetary value (RFV
or RFM) analysis [29]. Generally, shortened to RFV, it is sometimes
known as ‘‘RFM’’ analysis. In this approach to market segmenta-
tion, customers are clustered together into an arbitrary number of
segments according to their most recent day of purchase, the
number of purchases they have made and the monetary value of
their purchases. A random sample taken from the segmented
customer database is then, subjected to a direct marketing
campaign. As a result, some customer segments may reveal
themselves to be profitable, while others may do the reverse.
Subsequently, the remaining customers in the database who
belong to profitable segments are targeted by the same campaign
[30].
8.2. Evaluation of clustering methods

Several methods used to cluster 700 customers of http://
www.IranBin.com, an internet bookstore in Iran based on customer
loyalty. Based on RFM model, loyalty of each customer determined
with three parameters, R (recency of purchase), F (Frequency) and M
(Monetary), in this research customers segmented based on these
variables. The performance function of F (Eq. (4)), is also calculated
since it is used to evaluate the methods. Customers clustered into
five clusters. The results have been illustrated in Table 19.

Table 16 shows that FAPSO–ACO–K has the best performance
which is identical to the previously experimental result. The
FAPSO–ACO–K required the least number of function evaluation
(8980) which it is less than other evolutionary algorithms. The
FAPSO–ACO–K finds the optimum solution of 18177.294528 in
100% of all its 10 runs.

Cluster 1 is customers that have long relationship with the
Iranbin, buy more recently but the money they paid is low. Iranbin
should increase the value of sale to these customers by applying
appropriate marketing strategies.

Cluster 2 is customers that buy recently but they do not have
long relationship with Iranbin. In other word, they are new
customers that Iranbin should study more about them and attempt
to attract them and sales more to them.

Cluster 3 is customers that have long relationship with Iranbin
but recently sales to them decreased. Iranbin should apply appro-
priate marketing strategy for those customers to retention them.

Cluster 4 is the worth segment. Customers in this segment
purchase more, frequency of purchase in these customers is high
and they purchased recently. Customers in this segment have long
relationship with Iranbin and they are loyal customers.

Cluster 5 is customers purchased recently but value of purchase
is not high. They are partly loyal customers. Iranbin should apply
appropriate marketing strategies to increase value of sales to
customers of this cluster.

9. Conclusion

The clustering problem is a very important problem and has
attracted much attention of many researchers. The k-means
algorithm is a simple and efficient clustering method that has been
applied to many engineering problems; nevertheless it suffers
from several drawbacks due to its choice of initializations. This
paper has developed a new hybrid algorithm for solving the
clustering problem which is based on the combination of PSO, ACO
and k-means algorithms. The algorithm has been implemented and
tested on several well known real datasets and preliminary
computational experience is very encouraging. In other word it has
been proved that the FAPSO–ACO–K algorithm will definitely

http://www.iranbin.com/
http://www.iranbin.com/
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converge to optimal solution in almost runs. The FAPSO–ACO–K
clustering algorithm developed in this paper can be applied when
the number of clusters is known a prior.
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